کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6336496 1620343 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Speciated atmospheric mercury in the marine boundary layer of the Bohai Sea and Yellow Sea
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
پیش نمایش صفحه اول مقاله
Speciated atmospheric mercury in the marine boundary layer of the Bohai Sea and Yellow Sea
چکیده انگلیسی
The objectives of this study are to identify the spatial and temporal distributions of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and fine particulate mercury (HgP2.5) in the marine boundary layer (MBL) of the Bohai Sea (BS) and Yellow Sea (YS), and to investigate the relationships between mercury species and meteorological parameters. The mean concentrations of GEM, RGM, and HgP2.5 were 2.03 ng m−3, 2.5 pg m−3, and 8.2 pg m−3 in spring, and 2.09 ng m−3, 4.3 pg m−3, and 8.3 pg m−3 in fall. Reactive mercury (RGM + HgP2.5) represented < 1% of total atmospheric mercury (GEM + RGM + HgP2.5), which indicated that most mercury export in the MBL was GEM and the direct outflow of reactive mercury was very small. Moreover, GEM concentrations over the BS were generally higher than those over the YS both in spring and fall. Although RGM showed a homogeneous distribution over the BS and YS both in spring and fall, the mean RGM concentration in fall was significantly higher than that in spring. In contrast, the spatial distribution of HgP2.5 generally reflected a gradient with high levels near the coast of China and low levels in the open sea, suggesting the significant atmospheric mercury outflow from China. Interestingly, the mean RGM concentrations during daytime were significantly higher than those during nighttime both in spring and fall, while the opposite results were observed for HgP2.5. Additionally, RGM positively correlates with air temperature while negatively correlates with relative humidity. In conclusion, the elevated atmospheric mercury levels in the BS and YS compared to other open seas suggested that the human activities had a significant influence on the oceanic mercury cycle downwind of China.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Atmospheric Environment - Volume 131, April 2016, Pages 360-370
نویسندگان
, , , , ,