| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6353003 | 1622569 | 2014 | 10 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												What weather variables are important in predicting heat-related mortality? A new application of statistical learning methods
												
											ترجمه فارسی عنوان
													چه متغیرهای آب و هوایی در پیش بینی مرگ و میر مرتبط با حرارت مهم هستند؟ یک برنامه جدید از روش های یادگیری آماری 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												رطوبت مطلق، حرارت، مرگ و میر جنگل های تصادفی، درجه حرارت، آب و هوا،
																																							
												موضوعات مرتبط
												
													علوم زیستی و بیوفناوری
													علوم محیط زیست
													بهداشت، سم شناسی و جهش زایی
												
											چکیده انگلیسی
												Hot weather increases risk of mortality. Previous studies used different sets of weather variables to characterize heat stress, resulting in variation in heat-mortality associations depending on the metric used. We employed a statistical learning method - random forests - to examine which of the various weather variables had the greatest impact on heat-related mortality. We compiled a summertime daily weather and mortality counts dataset from four U.S. cities (Chicago, IL; Detroit, MI; Philadelphia, PA; and Phoenix, AZ) from 1998 to 2006. A variety of weather variables were ranked in predicting deviation from typical daily all-cause and cause-specific death counts. Ranks of weather variables varied with city and health outcome. Apparent temperature appeared to be the most important predictor of heat-related mortality for all-cause mortality. Absolute humidity was, on average, most frequently selected as one of the top variables for all-cause mortality and seven cause-specific mortality categories. Our analysis affirms that apparent temperature is a reasonable variable for activating heat alerts and warnings, which are commonly based on predictions of total mortality in next few days. Additionally, absolute humidity should be included in future heat-health studies. Finally, random forests can be used to guide the choice of weather variables in heat epidemiology studies.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Research - Volume 132, July 2014, Pages 350-359
											Journal: Environmental Research - Volume 132, July 2014, Pages 350-359
نویسندگان
												Kai Zhang, Yun Li, Joel D. Schwartz, Marie S. O׳Neill, 
											