کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6369508 1623828 2015 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using weighted features to predict recombination hotspots in Saccharomyces cerevisiae
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
Using weighted features to predict recombination hotspots in Saccharomyces cerevisiae
چکیده انگلیسی
Characterization and accurate prediction of recombination hotspots and coldspots have crucial implications for the mechanism of recombination. Several models have predicted recombination hot/cold spots successfully, but there is still much room for improvement. We present a novel classifier in which k-mer frequency, physical and thermodynamic properties of DNA sequences are incorporated in the form of weighted features. Applying the classifier to recombination hot/cold ORFs in Saccharomyces cerevisiae, we achieved an accuracy of 90%, which is ~5% higher than existing methods, such as iRSpot-PseDNC, IDQD and Random Forest. The model also predicted non-ORF recombination hot/cold spots sequences in S. cerevisiae with high accuracy. A broad applicability of the model in the field of classification is expected.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 382, 7 October 2015, Pages 15-22
نویسندگان
, , ,