کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
637415 883685 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced desulfurization performance and swelling resistance of asymmetric hydrophilic pervaporation membrane prepared through surface segregation technique
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
پیش نمایش صفحه اول مقاله
Enhanced desulfurization performance and swelling resistance of asymmetric hydrophilic pervaporation membrane prepared through surface segregation technique
چکیده انگلیسی

The severe swelling behavior of most hydrophobic membranes has always been an obstinate problem when separating organic mixtures by pervaporation. In some cases, hydrophilic membranes may be an appropriate alternative. In this study, amphiphilic copolymer Pluronic F127 was employed as a surface modifier to fabricate polyethersulfone (PES) asymmetric pervaporation membranes via surface segregation. The scanning electron microscopy (SEM) photographs showed an asymmetric structure of PES/Pluronic F127 membranes. The Fourier transform-infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements confirmed the hydrophilic modification of the membrane surface. Based on the distinct difference of solubility in water between thiophene and n-octane, the prepared membranes were utilized to remove thiophene from n-octane by pervaporation. The effect of Pluronic F127 content on the pervaporation performance was evaluated experimentally. It has been found that both the permeation flux and enrichment factor exhibited a peak value of approximately 60 wt% of the Pluronic F127 content. The highest enrichment factor was around 3.50 with a permeation flux of 3.10 kg/(m2 h) for 500 mg/L sulfur in the feed at 30 °C. The influence of various operating parameters on the pervaporation performance was extensively investigated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Membrane Science - Volume 326, Issue 2, 20 January 2009, Pages 556–563
نویسندگان
, , , , , ,