کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6380568 1625614 2016 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rainfall induced groundwater mound in wedge-shaped promontories: The Strack-Chernyshov model revisited
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Rainfall induced groundwater mound in wedge-shaped promontories: The Strack-Chernyshov model revisited
چکیده انگلیسی
An analytical solution to the Poisson equation governing Strack's discharge potential (squared thickness of a saturated zone in an unconfined aquifer) is obtained in a wedge-shaped domain with given head boundary conditions on the wedge sides (specified water level in an open water body around a porous promontory). The discharge vector components, maximum elevation of the water table in promontory vertical cross-sections, quantity of groundwater seeping through segments of the wedge sides, the volume of fresh groundwater in the mound are found. For acute angles, the solution to the problem is non-unique and specification of the behaviour at infinity is needed. A “basic” solution is distinguished, which minimizes the water table height above a horizontal bedrock. MODFLOW simulations are carried out in a finite triangular island and compare solutions with a constant-head, no-flow and “basic” boundary condition on one side of the triangle. Far from the tip of an infinite-size promontory one has to be cautious with truncation of the simulated flow domains and imposing corresponding boundary conditions. For a right and obtuse wedge angles, there are no positive solutions for the case of constant accretion on the water table. In a particular case of a confined rigid wedge-shaped aquifer and incompressible fluid, from an explicit solution to the Laplace equation for the hydraulic head with arbitrary time-space varying boundary conditions along the promontory rays, essentially 2-D transient Darcian flows within the wedge are computed. They illustrate that surface water waves on the promontory boundaries can generate strong Darcian waves inside the porous wedge. Evaporation from the water table and sea-water intruded interface (rather than a horizontal bed) are straightforward generalizations for the Poissonian Strack potential.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Water Resources - Volume 97, November 2016, Pages 110-119
نویسندگان
, , ,