کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6383 488 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cancer therapy and fluorescence imaging using the active release of doxorubicin from MSPs/Ni-LDH folate targeting nanoparticles
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Cancer therapy and fluorescence imaging using the active release of doxorubicin from MSPs/Ni-LDH folate targeting nanoparticles
چکیده انگلیسی

Hierarchical structured nanomaterials with diverse functionality, such as magnetic susceptibility, stimuli-responsiveness, environmental sensing and biocompatibility, are highly sought after for biomedicine and biodetection alike. In this study, we designed and fabricated a new kind of multifunctional core/shell nanospheres as biodegradable targeted drug carriers, the controlled drug release progress and therapeutic effect were monitored in-situ by the fluorescent state of the cells. Firstly, the core/shell nanospheres with biodegradability were synthesized using magnetic supraparticles (MSPs) as core and the layered double hydroxide (LDH) as shell via a hydrothermal route, the reaction parameters were well investigated to obtain the desired structure of the LDH shell. The anti-cancer drug doxorubicin was modified with carboxyl group (DOX-COOH) and loaded in the shell of MSPs/LDH nanospheres via an anion-exchange intercalation. To endow the nanospheres with tumor-targeting capability, IDA (iminodiacetic acid)-modified folate was successfully immobilized onto the surface of LDH shell using chelating interaction. These nanospheres behaved as multifunctional carriers for targeted delivery of anti-cancer drug, doxorubicin (DOX), within Hela cells and thus, these nano-drugs exhibited clear cytotoxicity and inhibition toward Hela cells as compared to normal cell-lines of HEK 293T cells. Interestingly, after the internalization of these nano-drugs, there was a sharp contrast in illumination between the tumorous Hela cells and the normal HEK 293T cells, the acidic cytoplasm of Hela cell stimulated DOX-COOH in LDH shell quickly degraded into positive-charged DOX, and then rapidly escaped from the positive-charged intercalation of LDH shell by strong repulsive interaction, the released DOX rapidly lit up the whole tumor cells in a short time, but only very weak light was found in HEK 293T cells.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 34, Issue 32, October 2013, Pages 7913–7922
نویسندگان
, , , , , ,