کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6400610 1330876 2015 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis
ترجمه فارسی عنوان
تشخیص سریع و غیر تهاجمی از خرابکاری های میکروبی ماهی با استفاده از تصویربرداری با اشعه ماوراء بنفش مرئی و چند بعدی و تجزیه و تحلیل چند متغیره
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش تغذیه
چکیده انگلیسی
The feasibility of visible and near infrared hyperspectral imaging in the range of 400-1000 nm for determinating total viable counts (TVC) to evaluate microbial spoilage of fish fillets was investigated. Partial least square regression (PLSR) and least square support vector machines (LS-SVM) models established based on full wavelengths showed excellent performances and the LS-SVM model was better with higher residual predictive deviation (RPD) of 3.89, determination coefficients in prediction (R2P) of 0.93 and lower root mean square errors in prediction (RMSEP) of 0.49 log10 CFU/g. Seven optimal wavelengths were selected by successive projections algorithm (SPA) and the simplified SPA-PLSR was better than SPA-LS-SVM models with RPD of 3.13, R2P of 0.90 and RMSEP of 0.57 log10 CFU/g, and was transferred to each pixel of the hyperspectral images for generating the TVC distribution map. This study showed that hyperspectral imaging is suitable to determine TVC value for evaluating microbial spoilage of grass carp fillets in a rapid and non-invasive manner.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: LWT - Food Science and Technology - Volume 62, Issue 2, July 2015, Pages 1060-1068
نویسندگان
, ,