کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
641059 1456987 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Artificial neural network prediction of chemical oxygen demand in dairy industry effluent treated by electrocoagulation
ترجمه فارسی عنوان
پیش بینی شبکه عصبی مصنوعی مصرف اکسیژن شیمیایی در پساب های صنعت لبنی توسط الکتروکواگولاسیون درمان می شود
کلمات کلیدی
الکترو کلاژن، شبکه های عصبی مصنوعی، خروجی صنعت لبنیات
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
چکیده انگلیسی


• Parameter optimization of wastewater treatment industry with EC results be beneficial.
• The reactions involved in the EC are complex.
• Artificial neural network can predict COD after treatment by electrocoagulation.

We used electrocoagulation to reduce the chemical oxygen demand of dairy industry effluent. The effects of operating parameters were evaluated, including the electric current density, initial effluent pH, electrolysis time and distance between electrodes. The characteristics of the effluent, namely, the solids content and its fractions, turbidity and chemical oxygen demand, were also considered. An artificial neural network was constructed to model chemical oxygen demand after electrocoagulation; it was trained and validated, yielding a correlation coefficient of 0.96 between predicted and experimental values. Input variables were ranked by their relative importance for the prediction of chemical oxygen demand after treatment by electrocoagulation. Among effluent the Total Dissolved Solids concentration had the greatest relative importance, followed by the chemical oxygen demand. It can be concluded that an artificial neural network can predict chemical oxygen demand after treatment by electrocoagulation. In practice, operating parameters may be adjusted to obtain a greater reduction of chemical oxygen demand and to allow automation of the handling process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Separation and Purification Technology - Volume 132, 20 August 2014, Pages 627–633
نویسندگان
, , , ,