کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6414424 1630476 2015 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semigroup graded algebras and codimension growth of graded polynomial identities
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Semigroup graded algebras and codimension growth of graded polynomial identities
چکیده انگلیسی

We show that if T is any of four semigroups of two elements that are not groups, there exists a finite dimensional associative T-graded algebra over a field of characteristic 0 such that the codimensions of its graded polynomial identities have a non-integer exponent of growth. In particular, we provide an example of a finite dimensional graded-simple semigroup graded algebra over an algebraically closed field of characteristic 0 with a non-integer graded PI-exponent, which is strictly less than the dimension of the algebra. However, if T is a left or right zero band and the T-graded algebra is unital, or T is a cancellative semigroup, then the T-graded algebra satisfies the graded analog of Amitsur's conjecture, i.e. there exists an integer graded PI-exponent. Moreover, in the first case it turns out that the ordinary and the graded PI-exponents coincide. In addition, we consider related problems on the structure of semigroup graded algebras.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 438, 15 September 2015, Pages 235-259
نویسندگان
,