کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6414648 1630515 2014 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Visible actions on flag varieties of exceptional groups and a generalization of the Cartan decomposition
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Visible actions on flag varieties of exceptional groups and a generalization of the Cartan decomposition
چکیده انگلیسی

We give a generalization of the Cartan decomposition for connected compact exceptional Lie groups motivated by the work on visible actions of T. Kobayashi [T. Kobayashi, J. Math. Soc. Japan 59 (2007) 669-691] for type A groups. This paper extends his results to the exceptional groups. First, we classify a pair of Levi subgroups (L,H) of any compact exceptional simple Lie group G such that G=LGσH where σ is a Chevalley-Weyl involution. This implies that the natural L-action on the generalized flag variety G/H is strongly visible, and likewise the H-action on G/L and the G-action on (G×G)/(L×H) are strongly visible. Second, we find a generalized Cartan decomposition G=LBH with B in Gσ by using the herringbone stitch method which was introduced by Kobayashi. Applications to multiplicity-free representations are also discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 399, 1 February 2014, Pages 170-189
نویسندگان
,