کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6415161 1334953 2013 61 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An approximation to Wiener measure and quantization of the Hamiltonian on manifolds with non-positive sectional curvature
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
An approximation to Wiener measure and quantization of the Hamiltonian on manifolds with non-positive sectional curvature
چکیده انگلیسی

This paper gives a rigorous interpretation of a Feynman path integral on a Riemannian manifold M with non-positive sectional curvature. An L2 Riemannian metric GP is given on the space of piecewise geodesic paths HP(M) adapted to the partition P of [0,1], whence a finite-dimensional approximation of Wiener measure is developed. It is proved that, as mesh(P)→0, the approximate Wiener measure converges in an L1 sense to the measure exp{−2+3203∫01Scal(σ(s))ds}dν(σ) on the Wiener space W(M) with Wiener measure ν. This gives a possible prescription for the path integral representation of the quantized Hamiltonian, as well as yielding such a result for the natural geometric approximation schemes originating in Andersson and Driver (1999) [3] and followed by Lim (2007) [34].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 265, Issue 8, 15 October 2013, Pages 1667-1727
نویسندگان
,