کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6415211 1334972 2014 56 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quasi-linear variable exponent boundary value problems with Wentzell-Robin and Wentzell boundary conditions
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Quasi-linear variable exponent boundary value problems with Wentzell-Robin and Wentzell boundary conditions
چکیده انگلیسی

Let p∈C0,1(Ω¯) be such that 10, and ∂u∂νdHN−1 denotes the generalized p(⋅)-normal derivative on ∂Ω (in the interpretative sense). We prove that the realization of the p(⋅)-Laplace operator with both of the above boundary conditions generate (nonlinear) ultracontractive submarkovian C0-semigroups on L2(Ω,dx)×L2(∂Ω,dμ), and hence, their associated first order Cauchy problems are both well posed on Lq(⋅)(Ω,dx)×Lq(⋅)(∂Ω,dμ) for all measurable function q with 1⩽q⁎⩽q⁎<∞. In addition, we investigate the associated quasi-linear elliptic problem with general Wentzell boundary conditions, and obtain existence, uniqueness and global regularity of weak solutions to this equation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 266, Issue 2, 15 January 2014, Pages 560-615
نویسندگان
,