کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6415265 1335093 2009 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Elliptic operators, conormal derivatives and positive parts of functions (with an appendix by Haïm Brezis)
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Elliptic operators, conormal derivatives and positive parts of functions (with an appendix by Haïm Brezis)
چکیده انگلیسی

Haïm Brezis and Augusto Ponce introduced and studied several extensions of Kato's inequality, in particular Kato's inequalities up to the boundary involving the Laplacian and the normal derivative of the positive part of a W1,1 function in a smooth domain [H. Brezis, A.C. Ponce, Kato's inequality when Δu is a measure, C. R. Acad. Sci. Paris Sér. I 338 (2004) 599-604; H. Brezis, A.C. Ponce, Kato's inequality up to the boundary, Commun. Contemp. Math. 10 (2008) 1217-1241]. Using potential theoretic methods we answer here some questions raised in [H. Brezis, A.C. Ponce, Kato's inequality up to the boundary, Commun. Contemp. Math. 10 (2008) 1217-1241] about the relations between the normal derivative of a function u and the normal derivative of its positive part u+. The results apply to a large class of domains and elliptic operators in divergence form and finally an expression of the normal derivative of a function of u is given. In the final appendix, H. Brezis solves an old question of J. Serrin about pathological solutions of certain elliptic equations [J. Serrin, Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Super. Pisa (3) 18 (1964) 385-387]. This is used in the paper to extend the first version of our main result.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 257, Issue 7, 1 October 2009, Pages 2124-2158
نویسندگان
,