کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
642155 1457027 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Aqueous chlorination of algal odorants: Reaction kinetics and formation of disinfection by-products
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
پیش نمایش صفحه اول مقاله
Aqueous chlorination of algal odorants: Reaction kinetics and formation of disinfection by-products
چکیده انگلیسی

Bench-scale kinetics tests were conducted to evaluate the formation of disinfection by-products (DBPs), as well as the odorant degradation, during chlorination of representative algal odorants. β-Cyclocitral degradation better followed a pseudo first order kinetics pattern, while the decomposition behaviors of β-ionone and heptanal were better described by the pseudo second order kinetics. Trihalomethanes (THMs) were commonly found during chlorination of β-cyclocitral, β-ionone and heptanal, but dimethylsulfide and dimethyl trisulfide did not contribute to the THM formation. In contrast, haloacetic acids (HAAs) were undetectable in all the samples. During chlorination of β-cyclocitral, β-ionone and heptanal, primary intermediate oxidation products were identified. Particularly, β-ionone was a significant THM precursor. Typically, the formation of chloroform was favored with the increasing pH from 2 to 12. In the tests to chlorinate raw water collected from the Taihu Lake, China, odorants in Microcystis aeruginosa could contribute to the chloroform formation. β-Cyclocitral and β-ionone, accounting for 0.021% μg/μg DOC and 0.0027% μg/μg DOC of intracellular organic matter (IOM), produced 0. 98% and 0.78% chloroform of IOM formed, respectively. This study demonstrated that algal odorants played a critical role in the DBP formation during chlorination in water treatment.


► This is the first attempt to quantitate chloroform formation of algal odorants.
► Chlorination of dimethylsulfide and dimethyl trisulfide appeared not to produce THMs and HAAs.
► β-Ionone could produce ∼224 μg chloroform/mg, while β-cyclocitral formed ∼41 μg/mg.
► β-Cyclocitral and β-ionone had a relatively high contribution to chloroform from Microcystis aeruginosa.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Separation and Purification Technology - Volume 92, 18 May 2012, Pages 93–99
نویسندگان
, , , , ,