کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6423330 1342323 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Orthogonal matchings revisited
ترجمه فارسی عنوان
مسابقات ارتوگنال بازمیگردد
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی

Let G be a graph on n vertices, which is an edge-disjoint union of ms-factors, that is, s regular spanning subgraphs. Alspach first posed the problem that if there exists a matching M of m edges with exactly one edge from each 2-factor. Such a matching is called orthogonal because of applications in design theory. For s=2, so far the best known result is due to Stong in 2002, which states that if n≥3m−2, then there is an orthogonal matching. Anstee and Caccetta also asked if there is a matching M of m edges with exactly one edge from each s-factor? They answered yes for s≥3. In this paper, we get a better bound and prove that if s=2 and n≥22m+4.5 (note that 22≤2.825), then there is an orthogonal matching. We also prove that if s=1 and n≥3.2m−1, then there is an orthogonal matching, which improves the previous bound (3.79m).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 338, Issue 11, 6 November 2015, Pages 2080-2088
نویسندگان
, , ,