کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6425595 1633820 2015 44 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Euler flag enumeration of Whitney stratified spaces
ترجمه فارسی عنوان
شمارش پرچم اویلر فضاهای طبقه بندی ویتنی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی

The flag vector contains all the face incidence data of a polytope, and in the poset setting, the chain enumerative data. It is a classical result due to Bayer and Klapper that for face lattices of polytopes, and more generally, Eulerian graded posets, the flag vector can be written as a cd-index, a non-commutative polynomial which removes all the linear redundancies among the flag vector entries. This result holds for regular CW complexes.We relax the regularity condition to show the cd-index exists for Whitney stratified manifolds by extending the notion of a graded poset to that of a quasi-graded poset. This is a poset endowed with an order-preserving rank function and a weighted zeta function. This allows us to generalize the classical notion of Eulerianness, and obtain a cd-index in the quasi-graded poset arena. We also extend the semi-suspension operation to that of embedding a complex in the boundary of a higher dimensional ball and study the simplicial shelling components.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 268, 2 January 2015, Pages 85-128
نویسندگان
, , ,