کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6427164 1634703 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An alternative model for CaCO3 over-shooting during the PETM: Biological carbonate compensation
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
An alternative model for CaCO3 over-shooting during the PETM: Biological carbonate compensation
چکیده انگلیسی


- Explains PETM overshooting with biological carbonate compensation.
- Demonstrates importance of deep-water isolation.
- Places upper limit on PETM CO2 emissions.

Decreased CaCO3 content of deep-sea sediments argues for rapid and massive acidification of the oceans during the Paleocene-Eocene Thermal Maximum (PETM, ∼56 Ma BP). In the course of the subsequent recovery from this acidification, sediment CaCO3 content came to exceed pre-PETM levels, known as over-shooting. Past studies have largely attributed the latter to increased alkalinity input to the oceans via enhanced weathering, but this ignores potentially important biological factors. We successfully reproduce the CaCO3 records from Walvis Ridge in the Atlantic Ocean, including over-shooting, using a biogeochemical box model. Replication of the CaCO3 records required: 1) introduction of a maximum of ∼6500 GtC of CO2 directly into deep-ocean waters or ∼8000 GtC into the atmosphere, 2) limited deep-water exchange between the Indo-Atlantic and Pacific oceans, 3) the disappearance of sediment bioturbation during a portion of the PETM, and 4) most central to this study, a ∼50% reduction in net CaCO3 production, during acidification. In our simulations, over-shooting is an emergent property, generated at constant alkalinity input (no weathering feedback) as a consequence of attenuated CaCO3 productivity. This occurs because lower net CaCO3 production from surface waters allows alkalinity to build-up in the deep oceans (alkalinization), thus promoting deep-water super-saturation. Restoration of CaCO3 productivity later in the PETM, particularly in the Indo-Atlantic Ocean, leads to greater accumulation of CaCO3, ergo over-shooting, which returns the ocean to pre-PETM conditions over a time scale greater than 200 ka.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 453, 1 November 2016, Pages 223-233
نویسندگان
, , , , ,