کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6427309 1634706 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Origin and role of fluids involved in the seismic cycle of extensional faults in carbonate rocks
ترجمه فارسی عنوان
منشاء و نقش مایعات درگیر در چرخه لرزه ای گسل های فرسایش در سنگ های کربناته
کلمات کلیدی
گردش خون مایع چرخه لرزه ای، فشار مایع، ایزوتوپهای پایدار، تکامل منطقه گسل، آپنین مرکزی،
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
چکیده انگلیسی


- Fault structures and stratigraphy influence fault-related fluid circulation.
- Between ∼3 and ∼1 km depths marine-derived fluids circulated within the fault zone.
- At depths ≤1 km meteoric-derived fluids infiltrated into the fault zone.
- Fluids were redistributed at hydrostatic pressure following co-seismic dilatancy.
- Only the principal fault has been characterized by fluid overpressures.

We examine the potentially-seismic right-lateral transtensional-extensional Tre Monti Fault (central Apennines, Italy) with structural and geochemical methods and develop a conceptual evolutionary model of extensional faulting with fluid involvement in shallow (≤3 km depth) faults in carbonate rocks. In the analysed fault zone, multiscale fault rock structures include injection veins, fluidized ultracataclasite layers, and crackle breccias, suggesting that the fault slipped seismically. We reconstructed the relative chronology of these structures through cross-cutting relationship and cathodoluminescence analyses. We then used C- and O-isotope data from different generations of fault-related mineralizations to show a shift from connate (marine-derived) to meteoric fluid circulation during exhumation from 3 to ≤1 km depths and concurrent fluid cooling from ∼68 to <30 °C. Between ∼3 km and ∼1 km depths, impermeable barriers within the sedimentary sequence created a semi-closed hydrological system, where prevalently connate fluids circulated within the fault zone at temperatures between 60° and 75 °C. During fault zone exhumation, at depths ≤1 km and temperatures <30 °C, the hydrological circulation became open and meteoric-derived fluids progressively infiltrated and circulated within the fault zone. The role of these fluids during syn-exhumation seismic cycles of the Tre Monti Fault has been substantially passive along the whole fault zone, the fluids being passively redistributed at hydrostatic pressure following co-seismic dilatancy. Only the principal fault has been characterized, locally and transiently, by fluid overpressures. The presence of low-permeability clayey layers in the sedimentary sequence contributed to control the type of fluids infiltrating into the fault zone and possibly their transient overpressures. These results can foster the comprehension of seismic faulting at shallow depths in carbonate rocks of other fold-thrust belts involved in post-collisional seismogenic extensional tectonics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 450, 15 September 2016, Pages 292-305
نویسندگان
, , , , , ,