کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6427782 1634725 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Explosive volcanism in complex impact craters on Mercury and the Moon: Influence of tectonic regime on depth of magmatic intrusion
ترجمه فارسی عنوان
آتشفشان انفجاری در ناحیه ضربه های پیچیده بر روی جیوه و ماه: تاثیر رژیم تکتونیکی بر عمق نفوذ ماگمایی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
چکیده انگلیسی


- Explosive volcanism occurs in floor-fractured craters on the Moon but not Mercury.
- Implies deeper magma storage beneath Mercury craters due to tectonic compression.
- Crustal extension may favor floor-fractured crater formation on terrestrial bodies.

Vents and deposits attributed to explosive volcanism occur within numerous impact craters on both the Moon and Mercury. Given the similarities between the two bodies it is probable that similar processes control this spatial association on both. However, the precise morphology and localization of the activity differs on the two bodies, indicating that the nature of structures beneath impact craters and/or volcanic activity may also be different. To explore this, we analyze sites of explosive volcanism within complex impact craters on the Moon and Mercury, comparing the scale and localization of volcanic activity and evidence for post-formation modification of the host crater. We show that the scale of vents and deposits is consistently greater on Mercury than on the Moon, indicating greater eruption energy, powered by a higher concentration of volatiles. Additionally, while the floors of lunar craters hosting explosive volcanism are commonly fractured, those on Mercury are not. The most probable explanation for these differences is that the state of regional compression acting on Mercury's crust through most of the planet's history results in deeper magma storage beneath craters on Mercury than on the Moon. The probable role of the regional stress regime in dictating the depth of intrusion on Mercury suggests that it may also play a role in the depth of sub-crater intrusion on the Moon and on other planetary bodies. Examples on the Moon (and also on Mars) commonly occur at locations where flexural extension may facilitate shallower intrusion than would be driven by the buoyancy of the magma alone.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 431, 1 December 2015, Pages 164-172
نویسندگان
, , , ,