کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6427853 1634724 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Zircon U-Pb ages and Hf isotopic compositions indicate multiple sources for Grenvillian detrital zircon deposited in western Laurentia
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
Zircon U-Pb ages and Hf isotopic compositions indicate multiple sources for Grenvillian detrital zircon deposited in western Laurentia
چکیده انگلیسی


- We report on the Hf isotopic compositions Mesoproterozoic detrital zircon deposited in southwestern North America.
- Mesoproterozoic detrital zircon of the same age have a wide range of Hf isotopic compositions.
- The Mesoproterozoic zircons were derived from source regions both proximal and distal to their ultimate depocenters.

Combined U-Pb ages and Hf isotopic data from 1.0 Ga to 1.3 Ga (Grenvillian) detrital zircon in Neoproterozoic and Cambrian siliciclastic sedimentary rocks in southwest North America, and from igneous zircon in potential Mesoproterozoic source rocks, are used to better assess the provenance of detrital zircon potentially transported across Laurentia in major river systems originating in the Grenville orogenic highlands. High-precision hafnium isotopic analyses of individual ∼1.1 Ga detrital zircon from Neoproterozoic siliciclastic sedimentary rocks in Sonora, northern Mexico, reveal that these zircons have low εHf(0) (−22 to −26) and were most likely derived from ∼1.1 Ga granitic rocks embedded in local Mojave Province Paleoproterozoic crust. In contrast, Grenvillian detrital zircons in Cambrian sedimentary rocks in Sonora, the Great Basin, and the Mojave Desert, have generally higher εHf(0) (−15 to −21) as demonstrated both by high precision solution-based, and by lower precision laser ablation, ICPMS data and were likely derived from more distal sources further to the east/southeast in Laurentia. Comparison to new and existing zircon U-Pb geochronology and Hf isotopic data from Grenvillian crystalline rocks from the Appalachian Mountains, central and west Texas, and from Paleoproterozoic terranes throughout southwest North America reveals that zircon in Cambrian sandstones need not entirely represent detritus transported across the continent from Grenville province rocks in the vicinity of the present-day southern Appalachian Mountains. Instead, these zircons could have been derived from more proximal, high εHf(0), ∼1.1 Ga, crystalline rocks such as those exposed today in the Llano Uplift in central Texas and in the Franklin Mountains of west Texas. Regardless of the exact source(s) of the Grenvillian detrital zircon, new and existing whole-rock Nd isotopic data from Neoproterozoic to Cambrian siliciclastic sedimentary rocks in the Mojave Desert demonstrate that the occurrences of higher εHf(0), Grenvillian detrital zircons are decoupled from the sources of the bulk of the sedimentary detritus in which the zircons are entrained. The Cambrian Wood Canyon Formation and the underlying “off craton” Neoproterozoic Johnnie Formation and Stirling Quartzite all contain higher εHf(0), Grenvillian detrital zircon, in some cases as the dominant detrital zircon population. However, only portions of the Wood Canyon Formation have whole rock Nd isotopic compositions consistent with a bulk sediment source in ∼1.1 Ga sources rocks. Whole rock Nd isotopic compositions of the remaining portions of this unit, and all of the Johnnie Formation and Stirling Quartzite, require bulk sediment sources principally in Paleoproterozoic continental crust. We consider the observed decoupling in the sources of Grenvillian detrital zircon and bulk sediment in the Wood Canyon Formation and underlying siliciclastic sediments as a demonstration that detrital zircon U-Pb and Hf isotopic data alone can provide an incomplete picture of the source of sediments that comprise a given siliciclastic stratigraphic unit.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 432, 15 December 2015, Pages 300-310
نویسندگان
, , , ,