کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6428475 | 1634746 | 2015 | 13 صفحه PDF | دانلود رایگان |

- K-Ar analysis of clay-size illite/muscovite dates brittle-ductile faulting.
- The ages of fault initiation and two phases of reactivation are constrained.
- Stable isotope data links mineral authigenesis to wall-rock disintegration.
- The finest authigenic grains constrain the timing of the last faulting increment.
- Age-grain size curves of fault rocks are interpreted as mixing curves.
Present-day exposures of ancient faults represent only the end result of the faults' often protracted and heterogeneous histories. Here we apply K-Ar dating of synkinematic illite/muscovite to constrain the timing of the complete temporal evolution of a complex, multiply-reactivated brittle-ductile fault, the Kvenklubben Fault in northern Norway. All obtained ages vary as a function of grain size. Geologically significant events are identified principally on the basis of detailed structural analysis presented in a companion paper (Torgersen and Viola, 2014). Faulting initiated at 531±11Ma, but most strain was accommodated during Caledonian compression at 445±9Ma. The fault was reactivated extensionally at 121±5Ma. C and O isotopic composition of carbonates and silicates in the fault rocks demonstrates that mineral authigenesis was linked to wall-rock disintegration through dolomite decarbonation and metabasalt carbonation. We suggest that the commonly observed case of age decreasing with grain size in K-Ar and 40Ar/39Ar dating of brittle fault rocks can be interpreted as a consequence of mixing between two end-member illite/muscovite generations: an authigenic and a protolithic, in which the finest authigenic grains constrain the timing of the last faulting increment. Integrating detailed structural analysis with age dating is the key towards a better understanding of fault architecture development and the temporal evolution of strain localization and deformation mechanisms.
Journal: Earth and Planetary Science Letters - Volume 410, 15 January 2015, Pages 212-224