کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6428502 1634737 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transition to an oxygen-rich atmosphere with an extensive overshoot triggered by the Paleoproterozoic snowball Earth
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
Transition to an oxygen-rich atmosphere with an extensive overshoot triggered by the Paleoproterozoic snowball Earth
چکیده انگلیسی


- Rise of oxygen induced by the Paleoproterozoic snowball glaciation is simulated.
- The glaciation causes a rapid transition between steady states of oxygen levels.
- The transition is accompanied with an extensive, long-term overshoot of oxygen.
- Such a dynamic transition is found to be consistent with geological records.

The Earth is thought to have multiple stable, steady-states regarding climate modes and atmospheric oxygen levels. The Paleoproterozoic is a remarkable period in Earth's history because of the simultaneous occurrence of large climatic and redox transitions between steady states; i.e., snowball Earth glaciation and the rise of oxygen. Geochemical evidence suggests that the oxygen rise was a dynamic transition with an extensive, long-term overshoot. However, previous models have not explained the dynamics of the oxygen rise, leaving its causal mechanism poorly understood. In the present study, we suggest that the oxygen transition with an overshoot occurred in response to a climatic transition at the termination of the snowball glaciation. Biogeochemical cycle modelling indicates that prolonged super-greenhouse conditions and effective nutrient input to the ocean after the glaciation lead to high levels of primary productivity and burial of organic carbon. This causes an abrupt jump of oxygen levels within ∼104yr after the glaciation and an extensive oxygen overshoot to the present atmospheric level. The overshoot persists for ∼108yr because net consumption of oxygen in the atmosphere-ocean system is inefficient. We show that the post-glacial jump of oxygen levels occurred in biologically short timescale, which may have stimulated the ecological shift and/or biological innovations toward the prosperity of oxygen-dependent life.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 419, 1 June 2015, Pages 178-186
نویسندگان
, , ,