کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6428533 1634741 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unified Structural Representation of the southern California crust and upper mantle
ترجمه فارسی عنوان
نمایه ساختاری متحد پوسته جنوب کالیفرنیا و گوشته بالا
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
چکیده انگلیسی


- We present a new 3D structural velocity model for the southern California crust and upper mantle.
- The model incorporates tens of thousands of direct velocity measurements.
- The model is enhanced using full 3D adjoint waveform tomography.
- Simulation of an M 7.9 earthquake shows the impact of velocity structure on strong ground motions.
- The 3D velocity structure of southern California reflects its complex tectonic history.

We present a new, 3D description of crust and upper mantle velocity structure in southern California implemented as a Unified Structural Representation (USR). The USR is comprised of detailed basin velocity descriptions that are based on tens of thousands of direct velocity (Vp, Vs) measurements and incorporates the locations and displacement of major fault zones that influence basin structure. These basin descriptions were used to developed tomographic models of crust and upper mantle velocity and density structure, which were subsequently iterated and improved using 3D waveform adjoint tomography. A geotechnical layer (GTL) based on Vs30 measurements and consistent with the underlying velocity descriptions was also developed as an optional model component. The resulting model provides a detailed description of the structure of the southern California crust and upper mantle that reflects the complex tectonic history of the region. The crust thickens eastward as Moho depth varies from 10 to 40 km reflecting the transition from oceanic to continental crust. Deep sedimentary basins and underlying areas of thin crust reflect Neogene extensional tectonics overprinted by transpressional deformation and rapid sediment deposition since the late Pliocene. To illustrate the impact of this complex structure on strong ground motion forecasting, we simulate rupture of a proposed M 7.9 earthquake source in the Western Transverse Ranges. The results show distinct basin amplification and focusing of energy that reflects crustal structure described by the USR that is not captured by simpler velocity descriptions. We anticipate that the USR will be useful for a broad range of simulation and modeling efforts, including strong ground motion forecasting, dynamic rupture simulations, and fault system modeling. The USR is available through the Southern California Earthquake Center (SCEC) website (http://www.scec.org).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 415, 1 April 2015, Pages 1-15
نویسندگان
, , , , , , , , , , , , , , , ,