کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6428732 1634748 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evaluating Marie Byrd Land stability using an improved basal topography
ترجمه فارسی عنوان
ارزیابی مری بیرد پایداری زمین با استفاده از توپوگرافی پایه بهبود یافته
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
چکیده انگلیسی


- Radar data reveal new bed features in Marie Byrd Land (MBL), West Antarctica.
- DeVicq glacier sits in a basal trough well below sea level.
- We model the stability of the ice in MBL using our new bed as a boundary condition.
- Our bed topography results in modest increases to sea-level rise estimates (2%).
- Despite a deeper bed, an ice-cap persists on MBL with a warm ocean.

Prior understanding of the ice-sheet setting in Marie Byrd Land (MBL) was derived primarily from geologic and geochemical studies of the current nunataks, with very few geophysical surveys imaging the ice covered regions. The geologic context suggested that the ice rests on a broad regional high, in contrast to the deep basins and trenches that characterize the majority of West Antarctica. This assumed topography would favor long-term stability for the West Antarctic Ice Sheet (WAIS) in MBL. Airborne geophysical data collected in 2009 reveal a much deeper bed than previously estimated, including a significant trough underlying DeVicq Glacier and evidence for extensive glacial erosion. Using these data, we produce a new map of subglacial topography, with which we model the sensitivity of WAIS to a warming ocean using the ice-sheet model of Pollard and DeConto (2012b). We compare the results to estimates of ice loss during WAIS collapse using the previously defined subglacial topography, to determine the impact of the newly discovered subglacial features. Our results indicate that the topographic changes are not sufficient to destabilize the northern margin of MBL currently feeding the Getz Ice Shelf; the majority of ice loss occurs from flow toward the Siple Coast. However, despite only slight dynamic differences, using the new bed as a boundary condition results in an additional 8 cm of sea-level rise during major glacial retreat, an increase of just over 2%. Precise estimation of past and future ice retreat, as well as a complete understanding of the geologic history of the region, will require a higher resolution picture of the bed topography around the Executive Committee mountains.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 408, 15 December 2014, Pages 362-369
نویسندگان
, , , ,