کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6428893 | 1634749 | 2014 | 12 صفحه PDF | دانلود رایگان |

- We analyze the Apennines to quantify isostatic and dynamic component of topography.
- The Apennines show variation along strike of crust thickness, elevation.
- Residual topography matches elevation, dynamic topography and vertical velocity.
- We infer that a large fraction of the Apennines topography can be related to mantle dynamics.
The elevation of an orogenic belt is commonly related to crustal/lithosphere thickening. Here, we discuss the Apennines as an example to show that topography at a plate margin may be controlled not only by isostatic adjustment but also by dynamic, mantle-driven processes. Using recent structural constraints for the crust and mantle we find that the expected crustal isostatic component explains only a fraction of the topography of the belt, indicating positive residual topography in the central Apennines and negative residual topography in the northern Apennines and Calabria. The trend of the residual topography matches the mantle flow induced dynamic topography estimated from regional tomography models. We infer that a large fraction of the Apennines topography is related to mantle dynamics, producing relative upwellings in the central Apennines and downwellings in the northern Apennines and Calabria where subduction is still ongoing. Comparison between geodetic and geological data on vertical motions indicates that this dynamic process started in the early Pleistocene and the resulting uplift appears related to the formation and enlargement of a slab window below the central Apennines. The case of the Apennines shows that at convergent margins the elevation of a mountain belt may be significantly different from that predicted solely by crustal isostasy and that a large fraction of the elevation and its rate of change are dynamically controlled by mantle convection.
Journal: Earth and Planetary Science Letters - Volume 407, 1 December 2014, Pages 163-174