کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6429185 1634755 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
High-temperature chlorine-rich fluid in the martian crust: A precursor to habitability
ترجمه فارسی عنوان
مایع غنی از کلر با درجه حرارت بالا در پوسته مریخ: یک پیشکسوت برای مسکن
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
چکیده انگلیسی


- We report the first occurrence of Cl-scapolite in a martian meteorite.
- Formation from either a late stage Cl-rich magma or magmatic hydrothermal brine.
- Temperatures of hydrothermal activity are higher than recorded by alteration minerals.
- Any potential biologic activity would have to endure high temperatures and saline fluids.
- Chlorine-rich phases present an opportunity to investigate for extant life.

We report scapolite in a melt inclusion in olivine in Nakhla, which is the first occurrence of Cl-scapolite found in a martian meteorite. Using terrestrial metamorphic experiments and modeling we constrain its origin. Cl-rich scapolite in Nakhla is consistent with formation from either a late stage Cl-rich, water-poor magma or magmatic Cl-rich hydrothermal brine at a minimum temperature of 700 °C. The temperature of hydrothermal activity recorded by the Cl-scapolite is significantly higher than the temperatures recorded by alteration minerals in Nakhla, and the fluid was Cl-rich, not CO2-rich. Our results demonstrate that high-temperature Cl-rich fluids were present within the martian crust, and any potential biologic activity would have to survive in these high temperatures and saline fluids. Halophiles can thrive in NaCl-rich systems but at significantly lower temperatures than those recorded by the scapolite. During cooling of the fluid, the system could have reached a habitable state for halophiles. Importantly, halophiles can survive the conditions of space if they are encased in salt crystals, and therefore chlorine-rich phases present an opportunity to investigate for extant life both on the surface of Mars and in martian meteorites.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 401, 1 September 2014, Pages 110-115
نویسندگان
, , , , ,