کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6430827 1634838 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Heterogeneous accretion, composition and core-mantle differentiation of the Earth
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
Heterogeneous accretion, composition and core-mantle differentiation of the Earth
چکیده انگلیسی

A model of core formation is presented that involves the Earth accreting heterogeneously through a series of impacts with smaller differentiated bodies. Each collision results in the impactor's metallic core reacting with a magma ocean before merging with the Earth's proto-core. The bulk compositions of accreting planetesimals are represented by average solar system abundances of non-volatile elements (i.e. CI-chondritic), with 22% enhancement of refractory elements and oxygen contents that are defined mainly by the Fe metal/FeO silicate ratio. Based on an anhydrous bulk chemistry, the compositions of coexisting core-forming metallic liquid and peridotitic silicate liquid are calculated by mass balance using experimentally-determined metal/silicate partition coefficients for the elements Fe, Si, O, Ni, Co, W, Nb, V, Ta and Cr. Oxygen fugacity is fixed by the partitioning of Fe between metal and silicate and depends on temperature, pressure and the oxygen content of the starting composition. Model parameters are determined by fitting the calculated mantle composition to the primitive mantle composition using least squares minimization. Models that involve homogeneous accretion or single-stage core formation do not provide acceptable fits. In the most successful models, involving 24 impacting bodies, the initial 60-70% (by mass) of the Earth accretes from highly-reduced material with the final 30-40% of accreted mass being more oxidised, which is consistent with results of dynamical accretion simulations. In order to obtain satisfactory fits for Ni, Co and W, it is required that the larger (and later) impactor cores fail to equilibrate completely before merging with the Earth's proto-core, as proposed previously on the basis of Hf-W isotopic studies. Estimated equilibration conditions may be consistent with magma oceans extending to the core-mantle boundary, thus making core formation extremely efficient. The model enables the compositional evolution of the Earth's mantle and core to be predicted throughout the course of accretion. The results are consistent with the late accretion of the Earth's water inventory, possibly with a late veneer after core formation was complete. Finally, the core is predicted to contain ~ 5 wt.% Ni, ~ 8 wt.% Si, ~ 2 wt.% S and ~ 0.5 wt.% O.

Research Highlights►We model multistage core formation during accretion of the Earth. ►Constraints on model parameters are provided by primitive mantle composition. ►Early accreting material was highly reduced but later became more oxidised. ►Metal-silicate equilibration pressures were ca. 50-70% of evolving CMB pressures. ►Cores of large impacting embryos failed to fully equilibrate in the magma ocean.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 301, Issues 1–2, 3 January 2011, Pages 31-42
نویسندگان
, , , , , , , , ,