کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6431012 | 1634890 | 2008 | 10 صفحه PDF | دانلود رایگان |

Timeseries derived from two-dimensional sandbox simulations involving surface erosion are taken for the first time to be implemented into flexure calculations of foreland basins. Based on our results we highlight that orogenic systems are a four component system, consisting of a pro-foreland basin, a pro-wedge, a retro-wedge, and a retro-foreland basin. These four components are mechanically coupled via the load dependence of tectonic faulting [Mandl, G., 1988. Mechanics of tectonic faulting, 1st Edition. Elsevier, Amsterdam.] and the finite flexural rigidity of lithospheric plates [Beaumont, C., 1981. Foreland basins. Geophys. J. R. Astron. Soc. 5 (2), 291-329.]. We further demonstrate that the impact of pro-wedge erosion is most pronounced within the pro-wedge but also modifies the shape and size of the retro-wedge, which in turn changes the geometry and propagation velocity of the retro-foreland basin and vice versa. This suggests that one out of the four components of an orogenic system cannot be fully understood without recognition of the other three components. Thus, spatial separation between processes or observations does not necessarily imply their physical independence. This conceptual model is applied in a case study to the Pyrenean orogenic wedge and its Ebro and Aquitaine foreland basins. Our analysis suggests that the Pyrenean pro- and retro-wedge are mechanically coupled and that this coupling manifests itself in the migration of depocentres in both foreland basins. We finally explore implications for the formation of Mississippi Valley Type deposits.
Journal: Earth and Planetary Science Letters - Volume 273, Issues 1â2, 30 August 2008, Pages 28-37