کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6448679 | 1642479 | 2015 | 39 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Evaluation of the realism of climate reconstruction using the Coexistence Approach with modern pollen samples from the Qinghai-Tibetan Plateau
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فسیل شناسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We apply the Coexistence Approach (CoA) to reconstruct mean annual precipitation (MAP), mean annual temperature (MAT), mean temperature of the warmest month (MTWA) and mean temperature of the coldest month (MTCO) at 44 pollen sites on the Qinghai-Tibetan Plateau. The modern climate ranges of the taxa are obtained (1) from county-level presence/absence data and (2) from data on the optimum and range of each taxon from Lu et al. (2011). The CoA based on the optimum and range data yields better predictions of observed climate parameters at the pollen sites than that based on the county-level data. The presence of arboreal pollen, most of which is derived from outside the region, distorts the reconstructions. More reliable reconstructions are obtained using only the non-arboreal component of the pollen assemblages. The root mean-squared error (RMSE) of the MAP reconstructions are smaller than the RMSE of MAT, MTWA and MTCO, suggesting that precipitation gradients are the most important control of vegetation distribution on the Qinghai-Tibetan Plateau. Our results show that CoA could be used to reconstruct past climates in this region, although in areas characterized by open vegetation the most reliable estimates will be obtained by excluding possible arboreal contaminants.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Review of Palaeobotany and Palynology - Volume 219, August 2015, Pages 172-182
Journal: Review of Palaeobotany and Palynology - Volume 219, August 2015, Pages 172-182
نویسندگان
Zhi-Yong Zhang, Sandy P. Harrison, Volker Mosbrugger, David K. Ferguson, Khum N. Paudayal, Anjali Trivedi, Cheng-Sen Li,