کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
651136 | 1457401 | 2016 | 12 صفحه PDF | دانلود رایگان |

• Four typical 3D separating flow structures inside a stator passage were found.
• The evolution of the separating flow structures is affected by the rotor tip gap.
• From the second flow structure to the third one there is an abrupt variation.
• A critical rotor tip blockage which induces this abrupt variation was proposed.
Flow separations in compressor blade passages are common and can cause significant flow blockage and loss production. This paper investigates experimentally the three-dimensional (3D) flow separations in a highly loaded low-speed large-scale compressor facility. Oil flow visualizations, stereoscopic particle image velocimetry (SPIV), and five-hole probe measurements are conducted at certain conditions from the near-chock to near-stall condition along the compressor operating line. The 3D separation and vortex flow structures in the stator at different operating conditions are analyzed. By changing the size of the rotor tip gap, six groups of oil-flow pictures are obtained to study the effect of the rotor gaps on the 3D separating flows in the downstream stator. The variation of the corner separation scale is almost linear with the rotor tip gap size. Along the compressor operating line, four typical 3D flow structures are found inside the stator passage. Between the second typical 3D flow structure and the third typical 3D flow structure, an unstable stage exists on the compressor operating line; during this stage, the hub corner separation becomes an open separation from the closed type. A smaller rotor tip gap corresponds to an earlier unstable stage. Finally, a critical rotor tip blockage state usually existed for the transform of corner separation types at a certain rotor tip gap configuration. This discovery is valuable for the study of multistage compressor matching problems at off-design conditions.
Journal: Experimental Thermal and Fluid Science - Volume 75, July 2016, Pages 96–107