کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6528589 | 1419837 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
کاتالیزور
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this study, the solubility of CO2 and supercritical (SC) CO2 in 20 ionic liquids (ILs) of different chemical families over a wide range of pressure (0.25-100.12â¯MPa) and temperature (278.15-450.49â¯K) were predicted, using a robust machine learning method of multi-layer perceptron neural network (MLP-NN). The developed model with the R2 of 0.9987, MSE of 0.6293 and AARD% of 1.8416 showed a great accuracy in predicting experimental values. In another approach for predicting the CO2 solubility, an empirical correlation with several constants was developed. With the R2 of 0.9922, MSE of 3.7874 and AARD% of 3.5078 the empirical correlation showed acceptable results; nevertheless weak compared to the ANN. The significance of this correlation is that it needs no physical property of the ILs or their mixture, and for its estimation, even a simple calculator is sufficient. A comprehensive statistical assessment conducted to assure the robustness and generality of the model. In addition, the applicability of the model and quality of experimental data was fully investigated by Leverage approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of CO2 Utilization - Volume 25, May 2018, Pages 99-107
Journal: Journal of CO2 Utilization - Volume 25, May 2018, Pages 99-107
نویسندگان
Mohammad Mesbah, Shohreh Shahsavari, Ebrahim Soroush, Neda Rahaei, Mashallah Rezakazemi,