کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6528883 1419838 2018 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adsorption behavior of CO2 on pristine and doped phosphorenes: A dispersion corrected DFT study
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Adsorption behavior of CO2 on pristine and doped phosphorenes: A dispersion corrected DFT study
چکیده انگلیسی
The density functional theory (DFT) method was used to study the adsorption of CO2 molecules on pristine and doped phosphorenes. Twenty dopants were considered during this study: Fe, Co, Ni, Ti, Cu, Au, Ag, Ca, Cr, Pd, Pt, V, Sr, Mn, B, C, N, O, Si, Ge, Se, and S. Two initial configurations of CO2 on the pristine and doped phosphorenes were also studied. The results for adsorption energy, isosurface of electron density difference, partial density of states, and charge transferring analysis indicated that pristine phosphorene had a very weak interaction with CO2. Some of transition metallic dopants, namely Fe, Co, Ti, Ni, Cr, and V, significantly improved the interactions between phosphorenes and CO2. Some other metallic dopants, however, namely Au, Ag, Pd, and Pt, and nonmetallic dopants, namely Ge, Si, Se, S, N, C, B, and O had negligible effect on the interactions between CO2 and phosphorene. Cr, Fe, Ti and V-doped phosphorenes had the potential to enhance CO2 adsorption with a particular CO2 configuration. The role of charge donor or acceptor changed between CO2 and (V- Cr-, Fe-, and Ti-) doped phosphorenes when the initial CO2 configuration changed. Thus, the use of transition metallic dopants was an effective way to enhance the interactions between CO2 and phosphorene. In particular, (V- Cr-, Fe-, and Ti-) doped phosphorenes showed the potential to sense or capture CO2 molecules.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of CO2 Utilization - Volume 24, March 2018, Pages 463-470
نویسندگان
, , , , , ,