کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
652911 1457480 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results
چکیده انگلیسی

The purpose of this study is to predict the thermal conductivity of graphene nanofluid by using multilayer perceptron (MLP) artificial neural network (ANN). Experimental measurement results of thermal conductivity of graphene nanoplatelets/deionized water nanofluid in 25 °C to 50 °C temperature and in weight percentages of 0.00025, 0.0005, 0.001, and 0.005 have been used in order to modeling by artificial neural network. Furthermore, in order to evaluate accuracy of the model in predicting the coefficient of nanofluid thermal conductivity, indexes of root mean square error (RMSE), coefficient of determination (R2), and mean absolute percentage error (MAPE) have been used which are equal to 0.04 W/mk, 99% and 0.26% respectively. In this study, considering all common methods for theoretical modeling of nanofluid thermal conductivity, Nan's theoretical method has been applied for assessing the importance of modeling and predicting the results using ANN. According to our research, the results of indexes and predictions show high accuracy and certainty of ANN modeling in comparison with experimental results and theoretical models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Communications in Heat and Mass Transfer - Volume 74, May 2016, Pages 11–17
نویسندگان
, , , ,