کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6540210 | 158852 | 2016 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Crop type mapping in a highly fragmented and heterogeneous agricultural landscape: A case of central Iran using multi-temporal Landsat 8 imagery
ترجمه فارسی عنوان
نقشه برداری محصول در یک چشم انداز کشاورزی بسیار ناهموار و یکنواخت: مورد ایران مرکزی با استفاده از تصاویر لندست چند زمانه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سنجش از دور، لندست 8، کشاورزی، نقشه برداری نوع محصول، اطلاعات فنولوژیک،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Crop type mapping and studying the dynamics of agricultural fields in arid and semi-arid environments are of high importance since these ecosystems have witnessed an unprecedented rate of area decline during the last decades. Crop type mapping using medium spatial resolution imagery data has been considered as one of the most important management tools. Remotely sensed data provide reliable, cost and time effective information for monitoring, analyzing and mapping of agricultural land areas. This research was conducted to explore the utility of Landsat 8 imagery data for crop type mapping in a highly fragmented and heterogeneous agricultural landscape in Najaf-Abad Hydrological Unit, Iran. Based on the phenological information from long-term field surveys, five Landsat 8 image scenes (from March to October) were processed to classify the main crop types. In this regard, wheat, barley, alfalfa, and fruit trees have been classified applying inventive decision tree algorithms and Support Vector Machine was used to categorize rice, potato, vegetables, and greenhouse vegetable crops. Accuracy assessment was then undertaken based on spring and summer crop maps (two confusion matrices) that resulted in Kappa coefficients of 0.89. The employed images and classification methods could form a basis for better crop type mapping in central Iran that is undergoing severe drought condition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers and Electronics in Agriculture - Volume 127, September 2016, Pages 531-540
Journal: Computers and Electronics in Agriculture - Volume 127, September 2016, Pages 531-540
نویسندگان
Ali Asgarian, Alireza Soffianian, Saeid Pourmanafi,