کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6540906 | 158888 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements
ترجمه فارسی عنوان
برآورد بیوماس گندم زمستانه بر اساس شاخص های طیفی، تجزیه و تحلیل عمق باند و رگرسیون حداقل مربعات جزئی با استفاده از اندازه گیری های هیپرپرتروم
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سنجش از دور سنجی، زیست توده گندم زمستانه، شاخص های پوشش گیاهی باریک، موقعیت قرمز لبه، تجزیه و تحلیل عمق باند رگرسیون حداقل مربع جزئی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Crop aboveground biomass estimates are critical for assessing crop growth and predicting yield. In order to ascertain the optimal methods for winter wheat biomass estimation, this study compared the utility of univariate techniques involving narrow band vegetation indices and red-edge position (REP), as well as multivariate calibration techniques involving the partial least square regression (PLSR) analyses using band depth parameters, and the combination of band depth parameters and hyperspectral indices including narrow band indices and REP. Narrow band indices were calculated in the form of normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI) using all possible two-band combinations for selecting optimal narrow band indices. Band depth, band depth ratio (BDR), normalized band depth index, and band depth normalized to area extracted from a red absorption region (550Â nm-750Â nm) were utilized as band depth parameters. The results indicated that: (1) Compared with the traditional NDVI and SAVI constructed with bands at 670Â nm and 800Â nm and REP, the selected narrow band indices (optimal NDVI-like and optimal SAVI-like) produced higher estimation accuracy of the winter wheat biomass; (2) the PLSR models based on band depth parameters produced lower root mean square error, relative to the models based on the selected narrow band indices; and (3) the PLSR model based on the combination of optimal NDVI-like and BDR produced the best estimated result of the winter wheat biomass (R2Â =Â 0.84, RMSEÂ =Â 0.177Â kg/m2). The results of this study suggest that PLSR analysis using the combination of optimal NDVI-like and band depth parameters could significantly improve estimation accuracy of winter wheat biomass.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers and Electronics in Agriculture - Volume 100, January 2014, Pages 51-59
Journal: Computers and Electronics in Agriculture - Volume 100, January 2014, Pages 51-59
نویسندگان
Yuanyuan Fu, Guijun Yang, Jihua Wang, Xiaoyu Song, Haikuan Feng,