کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6630415 | 1424932 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Lithotype-based modelling and simulations of coal degradation conditioned by both high and low energy breakage
ترجمه فارسی عنوان
مدل سازی مبتنی بر لیتوپیپ و شبیه سازی از تخریب زغال سنگ به علت شکستگی های بالا و پایین انرژی است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تخریب زغال سنگ، نسل مصنوعی، لیتوئیپت، مدل سازی شکستگی، شبیه سازی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
مهندسی شیمی (عمومی)
چکیده انگلیسی
The control of coal fragmentation and fines generation during mining and processing is important in coal production. A method to characterise, model and simulate coal size degradation and fines generation based on lithotypes has been developed. This method was refined to cover both high energy single impact to mimic blasting and crushing and low energy incremental breakage to mimic coal handling, transiting, stockpiling and processing. The JKRBT was utilised to characterise high energy single impact breakage and drop shatter tests were used to characterise low energy incremental breakage. X-ray Computed Tomography (XCT) scanning was used as an undisruptive technique to estimate size distributions of drill cores in the drop shatter tests. The JK size-dependent breakage model was applied for breakage characterisation, size degradation modelling and fines generation simulation. The results indicate that coal lithotype has a significant influence on coal degradation and fines generation. This paper has demonstrated that the adaption of two distinct breakage characterisation tests and linkage via the one model is a significant advance in quantifying coal degradation and fines generation during coal production.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuel - Volume 232, 15 November 2018, Pages 405-414
Journal: Fuel - Volume 232, 15 November 2018, Pages 405-414
نویسندگان
Fengnian Shi, Hongping Liu, Sandra Rodrigues, Joan Esterle, Anh K. Nguyen, Emmanuel Manlapig,