کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6634569 461116 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures
ترجمه فارسی عنوان
سرعت سوزش ورقه ای و طول مارکتستاین شعله های مخلوط شده با آمونیاک / هوا در فشارهای مختلف
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی
Ammonia is expected to be useful not only as a hydrogen-energy carrier but also as a carbon-free fuel. In order to design an ammonia fueled combustor, fundamental flame characteristics of ammonia must be understood. However, knowledge of the characteristics of ammonia/air flames, especially at the high pressures, has been insufficient. In this study, the unstretched laminar burning velocity and the Markstein length of ammonia/air premixed flames at various pressures up to 0.5 MPa were experimentally clarified for the first time. Spherically propagating premixed flames, which propagate in a constant volume combustion chamber, were observed using high-speed schlieren photography. Results indicate that the maximum value of unstretched laminar burning velocities is less than 7 cm/s within the examined conditions and is lower than those of hydrocarbon flames. The unstretched laminar burning velocity decreases with the increase in the initial mixture pressure, tendency being the same as that of hydrocarbon flames. The burned gas Markstein length increases with the increase in the equivalence ratio, the tendency being the same as that of hydrogen/air flames and methane/air flames. The burned gas Markstein lengths at 0.1 MPa are higher than those at 0.3 MPa and 0.5 MPa. However, the values of burned gas Markstein length at 0.3 MPa and 0.5 MPa are almost the same. In addition, numerical simulations using CHEMKIN-PRO with five detailed reaction mechanisms which are presently applicable for the ammonia/air combustion were also conducted. However, qualitative predictions of unstretched laminar burning velocity using those reaction mechanisms are inaccurate. Thus, further improvements of reaction mechanisms are essential for application of ammonia/air premixed flames.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuel - Volume 159, 1 November 2015, Pages 98-106
نویسندگان
, , , , , ,