کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6634637 | 461116 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
CO2 injection for enhanced oil recovery in Bakken tight oil reservoirs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The combination of horizontal drilling and multi-stage hydraulic fracturing have boosted the oil production from Bakken tight oil reservoirs. However, the primary oil recovery factor is very low due to the extremely tight formation, resulting in substantial volumes of oil still remaining in place. Hence, it is important to investigate the potential of applying enhanced oil recovery methods to increase oil recovery in the Bakken formation. Although carbon dioxide (CO2) is widely used in conventional reservoirs to improve oil recovery, it is a new subject and not well-understood in unconventional oil reservoirs such as the Bakken formation. In this paper, we use numerical reservoir simulation to model CO2 injection as a huff-n-puff process with typical reservoir and fracture properties from the Bakken formation. Effects of CO2 molecular diffusion, number of cycle, fracture half-length, permeability and reservoir heterogeneity on the well performance of CO2 huff-n-puff are examined in detail. The results show that the CO2 diffusion plays a significant role in improving oil recovery from tight oil reservoirs, which cannot be neglected in the reservoir simulation model. Additionally, the tight oil formation with lower permeability, longer fracture half-length, and more heterogeneity is more favorable for the CO2 huff-n-puff process. This work can provide a better understanding of the physical mechanisms and key parameters affecting the effectiveness of CO2 injection for enhanced oil recovery in the Bakken formation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuel - Volume 159, 1 November 2015, Pages 354-363
Journal: Fuel - Volume 159, 1 November 2015, Pages 354-363
نویسندگان
Wei Yu, Hamid Reza Lashgari, Kan Wu, Kamy Sepehrnoori,