کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6752629 1430800 2018 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-probabilistic wavelet method to consider uncertainties in structural damage detection
ترجمه فارسی عنوان
روش موجکی غیر احتمالی برای بررسی عدم قطعیت در تشخیص آسیب ساختاری
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
چکیده انگلیسی
In vibration-based damage detection studies, researchers have shown that wavelet transform (WT) is an effective tool for detecting damage. However, structural damage detection is hindered by uncertainties in structural models and measurement data. Various attempts have been made to address this problem by incorporating a probabilistic WT method. The success enjoyed by the probabilistic method is limited by lack of adequate information to obtain an unbiased probabilistic distribution of uncertainties. In addition, the probabilistic method involves complex and expensive computations. In this study, a non-probabilistic wavelet transform method is proposed that resolves the problem of uncertainties in vibration-based damage detection. The mode shapes of the damaged and undamaged structure are decomposed to obtain the wavelet transform coefficient values (m). With the interval analysis method, the uncertainties in the obtained mode shapes are taken to be coupled rather than statistically distributed. In this way, the interval bounds (upper and lower bounds) of the changes in the wavelet transform coefficient values are calculated. A coefficient increment factor (CIF) based on the wavelet transform coefficient value is established, and the elemental possibility of damage existence (PoDE) is defined. Numerical and experimental models of a four-side-fixed square steel plate are applied to demonstrate the efficiency of the proposed method. Furthermore, the effect of different damage severities and the impact of different noise levels on damage identification are presented. The proposed method effectively identified damage.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Sound and Vibration - Volume 433, 27 October 2018, Pages 77-98
نویسندگان
, , , , ,