کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6765288 | 1431590 | 2018 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An approach combining data mining and control charts-based model for fault detection in wind turbines
ترجمه فارسی عنوان
روشی که با استفاده از مدل داده کاوی و کنترل مبتنی بر نمودار برای تشخیص خطا در توربین های باد است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
قدرت باد، تشخیص گسل، استخراج ویژگی، کنترل فرآیند آماری،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Wind energy is growing to be one of main sources of renewable energy. As the operational and maintenance costs of wind turbines are adversely affected by the occurrence of faults, the early detection of potential faults can help reduce such costs. In this study, we propose a method for detecting potential faults sooner and identifying the probable variables contributing to the faults over a certain period as well as at a specific time. The proposed method uses data mining techniques to select the more important variables from the supervisory control and data acquisition (SCADA) systems of the turbine to improve the prediction accuracy and employs an exponentially weighted moving average (EWMA) model-based control chart to implement the residual approach, in order to remove the autocorrelation in the data. Both EWMA and multivariate EWMA (MEWMA) control charts are constructed so that their detection capabilities as well as the types of errors generated can be compared. We evaluated the proposed method by using both the SCADA data and the alarm log of a turbine. It was observed that the MEWMA chart is more suitable than the EWMA chart for the early detection and avoidance of errors.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 115, January 2018, Pages 808-816
Journal: Renewable Energy - Volume 115, January 2018, Pages 808-816
نویسندگان
Hsu-Hao Yang, Mei-Ling Huang, Chun-Mei Lai, Jhih-Rong Jin,