کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6774782 | 1432006 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Medical image super-resolution via minimum error regression model selection using random forest
ترجمه فارسی عنوان
تصویر فوق العاده وضوح تصویر پزشکی با استفاده از مدل رگرسیون حداقل خطا با استفاده از جنگل تصادفی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
فوق العاده رزولوشن، تصویر پزشکی، حداقل رگرسیون خطا، جنگل تصادفی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Super-resolution is designed to construct a high-resolution version of a low-resolution for more information. Super-resolution can help doctors to get a more accurate diagnosis. In this paper, we propose a novel super-resolution method utilizing minimum error regression selection. In the training step, we partition the patches into multiple clusters through jointly learning multiple regression models. Then we train a random forest model based on the patches of multiple clusters. During the reconstruction step, we use trained random forest model to select the most suitable regression model for the reconstruction of each low-resolution patch. Several medical images are applied to test the proposed method. We compare both the objective parameters and the visual effect to other state-of-the-art example-based methods. Experiment results show that the proposed method has better performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Sustainable Cities and Society - Volume 42, October 2018, Pages 1-12
Journal: Sustainable Cities and Society - Volume 42, October 2018, Pages 1-12
نویسندگان
Qingyu Dou, Shuaifang Wei, Xiaomin Yang, Wei Wu, Kai Liu,