کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6854132 1437404 2018 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization
چکیده انگلیسی
It was determined in the course of the experiments that the detector, along with its supporting design methodology, reaches F1 equal or very close to 1 for almost all test sets. Due to the profile of the data, the setup with the lowest maximum false anomaly length of the detector turned out to perform the best among all five tested configuration schemes of the detection system. The quantization parameters have the biggest impact on the overall performance of the detector with the best values of input/output grid equal to 16 and 8, respectively. The proposed solution of the detection significantly outperformed OC-SVM-based detector in most of the cases, with much more stable performance across all the datasets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 74, September 2018, Pages 166-185
نویسندگان
, , , ,