کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6854356 | 1437428 | 2016 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A boundary-fixed negative selection algorithm with online adaptive learning under small samples for anomaly detection
ترجمه فارسی عنوان
الگوریتم انتخاب منفی مرزی ثابت با یادگیری سازگاری آنلاین تحت نمونه های کوچک برای تشخیص ناهنجاری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سیستم ایمنی مصنوعی، الگوریتم انتخاب منفی، تشخیص آنومالی، یادگیری انطباق پذیری آنلاین،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
The traditional negative selection algorithm (NSA) lacks online adaptive learning ability, and this restricts its application range. A new NSA, boundary-fixed negative selection algorithm with online adaptive learning under small samples (OALFB-NSA), is proposed in this paper. Boundary-fixed negative selection algorithm (FB-NSA) generates a layer of detectors, which are around the self space. These detectors are only related to the training samples, and have nothing to do with the training times. OALFB-NSA detectors can adapt themselves to real-time variety of self space during the testing stage. Experimental comparison among FB-NSA, V-detector and other anomaly detection algorithms on Iris data sets and biomedical dataset shows that the FB-NSA can obtain the higher detection rate and lower false alarm rate in most cases. The experimental comparison between OALFB-NSA, interface detector with online adaptive learning under small training samples (OALI-detector) and V-detector on Iris data sets shows that when overfitting does not occur, the OALFB-NSA can obtain the higher detection rate and lower false alarm rate, even if only one self sample is used for training.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 50, April 2016, Pages 93-105
Journal: Engineering Applications of Artificial Intelligence - Volume 50, April 2016, Pages 93-105
نویسندگان
Dong Li, Shulin Liu, Hongli Zhang,