کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6854959 | 1437600 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A stop-and-start adaptive cellular genetic algorithm for mobility management of GSM-LTE cellular network users
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The optimisation of the user tracking process is one of the most challenging tasks in today's advanced cellular networks. In this paper, we propose a new low-complexity adaptive cellular genetic algorithm to solve this problem. The proposed approach uses a torus-like structured population of candidate solutions and regulates interactions inside it by using a bi-dimensional neighbourhood. It also automatically adapts the algorithm's parameters and regenerates the algorithm's population using two algorithmically-light operators. In order to draw reliable conclusions and perform an encompassing assessment, extensive experiments have been conducted on 25 differently-sized realistic networks. The proposed approach has been compared against 26 state-of-the-art algorithms previously designed to solve the mobility management problem, and a thorough statistical analysis of results has been performed. The obtained results have shown that our proposal is more efficient and algorithmically less complex than most of the state-of-the-art solvers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 106, 15 September 2018, Pages 290-304
Journal: Expert Systems with Applications - Volume 106, 15 September 2018, Pages 290-304
نویسندگان
Zakaria Abdelmoiz Dahi, Enrique Alba, Amer Draa,