کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6855018 1437603 2018 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A+ Evolutionary search algorithm and QR decomposition based rotation invariant crossover operator
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A+ Evolutionary search algorithm and QR decomposition based rotation invariant crossover operator
چکیده انگلیسی
The recently proposed artificial cooperative search (ACS) algorithm is a population-based iterative evolutionary algorithm (EA) for solving real-valued numerical optimization problems. It uses a rotation-invariant line recombination-based mutation strategy and rule-based crossover operator. However, it performs poorly for problems that include closely-related variables because, in these cases, generating uncorrelated feasible trial solution vectors using stochastic crossover methods is extremely difficult, and its mutation and crossover operators are also less effective. This paper adds a new QR-decomposition-based rotation-invariant search strategy to the ACS algorithm to improve its ability to solve such problems. This new, advanced ACS algorithm, called A+, has only one control parameter, α, and experimental results have shown that its performance does not strongly depend on the initial value of α. This paper also examines A+'s performance for noisy point cloud filtering, which is a complex real-world problem. The results of numerical experiments demonstrate that A+'s performance when solving numerical and real-world problems with closely-related variables is better than those of the comparison algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 103, 1 August 2018, Pages 49-62
نویسندگان
, ,