کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6855152 | 1437608 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An overlap-sensitive margin classifier for imbalanced and overlapping data
ترجمه فارسی عنوان
یک طبقه بندی حاشیه حساس به همپوشانی برای داده های عدم توازن و همپوشانی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
طبقه بندی، کلاس نامتعادل کلاس همپوشانی، ماشین بردار پشتیبانی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Classification is an important task in various areas. In many real-world applications, class imbalance and overlapping problems have been reported as major issues in the application of traditional classification algorithms. An imbalance problem occurs when training data contain considerably more representatives of one class than of other classes. Class overlap occurs when a region in the data space contains a similar number of data for each class. When a class overlap occurs in imbalanced data sets, classification becomes even more complicated. Although various approaches have been proposed to deal separately with class imbalance and overlapping problems, only a few studies have attempted to address both problems simultaneously. In this paper, we propose an overlap-sensitive margin (OSM) classifier based on a modified fuzzy support vector machine and k-nearest neighbor algorithm to address imbalanced and overlapping data sets. The main idea of the proposed OSM classifier is to separate the data space into soft- and hard-overlap regions using the modified fuzzy support vector machine algorithm. The separated spaces are then classified using the decision boundaries of the support vector machine and 1-nearest neighbor algorithms. Furthermore, by separating a data set into soft- and hard-overlap regions, one can determine which part of the data is to be examined more closely for classification in real-world situations. Experiments using synthetic and real-world data sets demonstrated that the proposed OSM classifier outperformed existing methods for imbalanced and overlapping situations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 98, 15 May 2018, Pages 72-83
Journal: Expert Systems with Applications - Volume 98, 15 May 2018, Pages 72-83
نویسندگان
Han Kyu Lee, Seoung Bum Kim,