کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6855181 1437609 2018 41 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Disease spreading in complex networks: A numerical study with Principal Component Analysis
ترجمه فارسی عنوان
گسترش بیماری در شبکه های پیچیده: یک مطالعه عددی با تجزیه و تحلیل مولفه اصلی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Disease spreading models need a population model to organize how individuals are distributed over space and how they are connected. Usually, disease agent (bacteria, virus) passes between individuals through these connections and an epidemic outbreak may occur. Here, complex networks models, like Erdös-Rényi, Small-World, Scale-Free and Barábasi-Albert will be used for modeling a population, since they are used for social networks; and the disease will be modeled by a SIR (Susceptible-Infected-Recovered) model. The objective of this work is, regardless of the network/population model, analyze which topological parameters are more relevant for a disease success or failure. Therefore, the SIR model is simulated in a wide range of each network model and a first analysis is done. By using data from all simulations, an investigation with Principal Component Analysis (PCA) is done in order to find the most relevant topological and disease parameters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 97, 1 May 2018, Pages 41-50
نویسندگان
, ,