کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6855253 1437610 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces
چکیده انگلیسی
One of the most important issues for the development of a motor-imagery based brain-computer interface (BCI) is how to design a powerful classifier with strong generalization capability. Extreme learning machine (ELM) has recently proven to be comparable or more efficient than support vector machine for many pattern recognition problems. In this study, we propose a multi-kernel ELM (MKELM)-based method for motor imagery electroencephalogram (EEG) classification. The kernel extension of ELM provides an elegant way to circumvent calculation of the hidden layer outputs and inherently encode it in a kernel matrix. We investigate effects of two different kernel functions (i.e., Gaussian kernel and polynomial kernel) on the performance of kernel ELM. The MKELM method is subsequently developed by integrating these two types of kernels with a multi-kernel learning strategy, which can effectively explore the supplementary information from multiple nonlinear feature spaces for more robust classification of EEG. An extensive experimental comparison with two public EEG datasets indicates that the MKELM method gives higher classification accuracy than those of the other competing algorithms. The experimental results confirm that superiority of the proposed MKELM-based method for accurate classification of EEG associated with motor imagery in BCI applications. Our method also provides a promising and generalized solution to investigate the complex and nonlinear information for various applications in the fields of expert and intelligent systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 96, 15 April 2018, Pages 302-310
نویسندگان
, , , , , , ,