کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6855900 | 1437695 | 2018 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Generalised kernel weighted fuzzy C-means clustering algorithm with local information
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
To improve the performance of segmentation for the images corrupted by noise, many variants of standard fuzzy C-means (FCM) clustering algorithm have been proposed that incorporate the local spatial neighbourhood information to perform image segmentation. Among them, the kernel weighted fuzzy local information C-means (KWFLICM) algorithm gives robust to noise image segmentation results by using local spatial image neighbourhood information, it is limited to one-dimensional input data i.e. image intensity. In this paper, we propose a generalisation of KWFLICM (GKWFLICM) that is applicable to M-dimensional input data sets. The proposed algorithm incorporates neighbourhood information among the M-dimensional data, which mitigates the disadvantages of the standard FCM clustering algorithm (sensitive to noise and outliers, poor performance for differently sized clusters and for different density clusters) and greatly improves the clustering performance. Experiments have been performed on several noisy and non-noisy data sets, as well as natural and real-world images, to demonstrate the effectiveness, efficiency, and robustness to noise of the GKWFLICM algorithm by comparing it to kernel fuzzy C-means (KFCM), kernel possibilistic fuzzy C-means (KPFCM), fuzzy local information C-means (FLICM), and KWFLICM.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 340, 1 June 2018, Pages 91-108
Journal: Fuzzy Sets and Systems - Volume 340, 1 June 2018, Pages 91-108
نویسندگان
Kashif Hussain Memon, Dong-Ho Lee,