کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6859639 | 1438726 | 2016 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Novel filter based ANN approach for short-circuit faults detection, classification and location in power transmission lines
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a novel approach for detecting, classifying and locating short-circuit faults in power transmission lines. Based on the proposed approach, a hybrid framework consisting of a proposed two-stage finite impulse response (FIR) filter, four support vector machines (SVMs), and eleven support vector regressions (SVRs) is implemented in Proteus 6/MATLAB environments. The proposed two-stage FIR filter together with the SVMs are used to detect and classify short-circuit faults while the SVRs are utilized to locate short-circuit faults. The implemented framework needs few training samples for training the SVMs and SVRs. As will be shown, for a power transmission line with the length of 50Â km, only 6 training samples are needed to train each SVR. The trained hybrid framework carries out the processes of fault detection, classification and location only during 1 cycle which is strictly shorter than the faults clearing time. It means that the proposed hybrid framework can rapidly detect, classify and locate short-circuit faults in power transmission lines before power outage carried out by protection relays. An actual three-phase 230Â kV, 50Â Hz power transmission line with the length of 50Â km is simulated to validate the theoretical results and to verify the proposed technique accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 74, January 2016, Pages 374-383
Journal: International Journal of Electrical Power & Energy Systems - Volume 74, January 2016, Pages 374-383
نویسندگان
Hassan Fathabadi,